Via 2Ulc

Fast View-Dependent Level-of-Detall
Rendering Using Cached Geometry

Josh Levenberg
UC Berkeley
http://www.technomagi.com/josh/vis2002/

“i%

Outline /S VIS 200s

e Problem statement
e Review of ROAM, an existing level-of-detail algorithm

e Binary Triangle Trees (BTTs), the mesh representation in
NOJAVY/
e CABTT, my modification to ROAM for improved performance

— Continuity
— Error metric
— Amount of aggregation

e Conclusion

‘;%

Goal /S VIS 20028

e Render a large height field at interactive rates on consumer
hardware

e For games, flight simulations

e \Want to take advantage of modern and future consumer video
cards double in speed every 6 months

e Height fields are memory efficient, 32 million triangles in 32
MB

‘5%
T

Algorithm Comparison

/S VIS 2002
Brute force CABTT ROAM
6,200k tris 150k tris 60k tris
1-2 fps 120 fps 18 fps
geometry bound CPU bound

Speeds are for a 4k x 4k height field

Puget Sound data set from Lindstrom and Pascucci’s web site
32 million triangles before view culling

1.7 GHz Pentium 4m, NVIDIA GeForce 4 440 Go

“i%

ROAM (ReVieW) /S VIS 2008

e ROAMINng Terrain: Real-time Optimally Adapting Meshes by
Duchaineau et al. IEEE Vis 1997

¢ View-dependent level of detall

e Maintains a crack-free mesh using a Binary Triangle Tree
(BTT)

e Incrementally modifies mesh from frame-to-frame

e Uses prioritized work queues to control work per frame

‘5%
T

ROAM /S VIS 2002

Advantages
e Few triangles to achieve error bound

e Fine control over error threshold, time spent per frame

Disadvantages
e Lots of per-triangle processing: CPU bound

e Can’t cache on video card

k4

Binary Triangle Trees Vs 200

e AKA: triangle bintrees, right triangular irregular networks,
newest-vertex-bisection meshes, BTTs

e Usually for Terrain, but works with base mesh + displacement
map

0

Don’t want T-dJunctions VIS 200z

< /<>

<>

*..

Example /- Via2lde

5x5 height field

Diamond %

Sviszoos

binary triangle

base mesh = initial triangles

10

Split of diamond %

Y I=T=nN]=

11

Split at edge ‘iﬁ%

/S VIS 2008

12

Another split %

/S VIS 2008

13

Another split %

/S VIS 2008

14

Force split %

/S VIS 2002

15

‘5%
T

Force split
P /S VIS 2002

16

e

Force split
P /S VIS 2008

17

‘5%
T

Force split
P /S VIS 2002

18

Force split

VIS 2002

TR,
‘a\

20

Merge % -

’ H EEEEEEEE

N\

VIS 2002

TR,
‘a\

22

Another merge %

/S VIS 2002

23

VIS 2002

TR,
‘a\

24

o

ROAM render loop Vi =oo=

e Split and merge to update BTT from last frame

e Render on-screen parts of BTT

“i%

New algorithm: CABTT VIS 2002

e TWO Improvements: aggregation and caching
e Mostly avoids per-triangle work

e Can trade between CPU work and more triangles for graphics
card

e Similar to RUSTIC except without having to precompute ge-
ometry

e Aggregates are large chunks of fixed geometry
e To change LOD, swap in more/fewer aggregates

e Aggregates may be cached

Example %

/S VIS 2002

27

Split %

/S VIS 2002

28

Split %

/S VIS 2002

A

Split "

VIS 2002

30

Merge % -

/S VIS 2002

¥

Aggregation Issues Sy

e Continuity between adjacent aggregates
e Computing aggregate error

e Choosing amount of aggregation

32

k-3

Continuity S viszoos

e Do not want T-junctions

e Adjacent aggregates are often at different levels of detall

e Mandate that aggregate boundaries are uniformly subdivided
e Costs < 20%

33

e

Aggregate boundaries match up o gy

k-3

Adaptive subdivision VIS 2002

e Previous picture showed uniformly subdivided aggregates

e Instead use a mini-BTT to create geometry tailored to height
field

e 2X Improvement over uniform subdivision

— fewer triangles per aggregate
— lower approximation error

e “Tree of Trees”

35

-2

Initial subdivision of aggregates VIS 2002

n=1, 2 segments per edge

36

‘5%
bbb

Initial subdivision of aggregates o Sy

n=2, 4 segments per edge

S/

Initial subdivision of aggregates Y o=

n=3, 8 segments per edge

38

Initial subdivision of aggregates Y o=

n=4, 16 segments per edge

; VIS 2002

Interior is adaptively subdivided

Split to minimize error In interior

¥

CABTT render loop Vi =oo=

e Split and merge to update BTT from last frame

— driven by a priority queue ordered by “camera movement until transitions
are possible”

e Render on-screen parts of BTT
If already cached.:

—render cache

Else:

— construct aggregate/mini-BTT
—send geometry to video card
—discard mini-BTT

41

‘5%
bbb

Aggregate error
slelrste /S VIS 2002

42

k-3

Aggregate error
slelrste /S VIS 2008

43

¥

Aggregate error
gg g / VIS 2002

Choosing aggregation level

e Profile a few levels at install time

e More aggregation:

— more triangles to render

— uses less main memory

—less CPU processing

— fewer splits and merges

— more work for every split and merge

e Rule of thumb: n=4

*

!

VIS 2002

45

“i%

Aggregation level 4

/S VIS 2002

No aggregation n=4

180 triangles/aggregate
1 segment in boundary 16 segments In boundary
60,000 triangles 150,000 triangles
420,000 tree nodes 7,000 tree nodes
1.3 MB active data 0.3 MB active data
5500 split/merge tests per frame 90 split/merge tests per frame
300 splits per frame 4 splits per frame

46

‘5%
T

Advantages of CABTT VIS 2002

e Greatly improved performance

— higher frame rates

— lower error tolerances

— more detall up close

— larger worlds or “to the horizon” rendering

e Adaptable to many hardware configurations
e Future proof
e Very efficient instancing (rendering many identical objects)

e Preserves most good features of ROAM

Performance PV =1=lx =

B no caching = with caching

=
N
o1

~N O
o1 O

U1
o

N
O1

Trames per second

o

DD O O X O O

® VLRSS P
N\ ('O\ Q)\\
. LN
sub-triangles per aggregate R

Q

Q~

48

k-3

Disadvantages of CABTT Y

e 2.5x triangles to achieve same error bound (but each renders
18x faster)

e More expensive to change error threshold

e Minimum detall level

— Could switch to a different LOD algorithm for far away objects

49

o

Future work
/ VIS 2002

e Out-of-core rendering
e Other geometry

e Multiple instances

50

¥

ions”?
Questions” /S Vis2o0s

Interactive Demonstration from 4-5pm today.

http://www.technomagi.com/josh/vis2002/
e Source code
e Demo

e These slides

51

Large data sets %

/S VIS 2008

e Large textures are memory intensive

— Texture LOD: Assign a static texture to each aggregate triangle

e Simple: use memory-mapped files

— Visualization of Large Terrains Made Easy, Lindstrom and Pascucci,
IEEE Vis 2001

e Harder: use non-blocking 1/O

— Anticipate what data will be needed in the next several frames
— Prevent splits until data is loaded
— Keep aggregate error data in memory (1 float per 256 grid values)

52

“i%

Non-terrain models VIS 200z

Lots of research into base mesh + displacement:
e Normal meshes, Guskov et al., SIGGRAPH 2000
e Displaced subdivision surfaces, Lee et al., SIGGRAPH 2000

e Fitting smooth surfaces to dense polygon meshes, Krishna-
murthy and Levoy, SIGGRAPH 1996

e Remeshing: MAPS, Lee et al.,, SIGGRAPH 1998 and Kobbelt,
et al., Eurographics ‘99

53

k-3

Limitation: Static mesh VIS 2002

e Maln reason: error metric

e Workaround: aggregate error could be updated in background
thread

e Alternative: use an error metric that is easier to update (mono-
tonic)

e Alternative: update error metric approximately

54

‘5%
T

Past ROAM Improvements VIS 2002

e Generally reduced CPU per triangle rendered

e Improving cache coherency (Lindstrom and Pascucci)
e Hierarchical work queue (Blow)

e SiImplifying error metric (Blow)

e Storing only leaves of the tree (Blow)

e RUSTIC: a form of aggregation, but high memory and lots of
precomputation

All but the last of these stores every triangle in a BTT.

55

‘5%
T

Multiple instances Vs 2002

e Ildea Is to share caches between models

e Keep a map from (base triangle, leaf number) in the model to
caches

e Maintain a count of how many instances are using each cache

e Still have an aggregated BTT for each model, plus a location
and orientation

56

‘5%
bbb

Uniform boundary splitting S o0

SplitEdge(BttNode, Side):
If BttNode Is a leatf:
BttNode.Split()
If Side Is not base:
BttNode.Child(Side).Split()
else if Side iIs base:
SplitEdge(BttNode.Child(left), right)
SplitEdge(BttNode.Child(right), left)
else:
SplitEdge(BttNode.Child(Side), base)

57

‘5%
bbb

Computing aggregate error /S V52002

e | use spherical error volumes
screen error =~ Cworld space error/distance to camera
e Triangle inequality:

view point to triangle < view point to center
+-center to triangle

e Aggregate error contains error volumes of all sub-triangles

Cworld space error}

Radius = max < center to triangle
screen error

58

Geometric complexity Y c a0

6,208
o 700
S 600
S o 500
= & 400
2 T 300
S = 200
S 100
= 0

© X S\
?@ X P D0 d @q@q{&%
\,\ %\ </)\ \
_ P
sub-triangles per aggregate

59

Rendering speed SSviszooz

B no caching [with caching
s 20
(@)
§g
= 8 12
S &
25 O
o O
— 4
= 0
* DDA O N> O O
O§\ P ELRST S P
Q& DA

sub-triangles per aggregate

G10)

‘;%

Performance table

/S VIS 2002
Laptop Desktop

2k X 2k |4k x 4k | 2k x 2k | 4k x 4k
CABTT 121 fps| 120 fps| 67 fps | 39 fps
No caching 47 fps | 46 fps 25 fps | 17 fps
ROAM 19 fps 18 fps 9.7 fps | 6.1 fps
~ull mesh 4.5 fps| 1.3 fps | 2.3 fps 0.6 fps
~ull mesh w/ caching 14 fps

Laptop has a 1.7 GHz Pentium 4m, NVIDIA GeForce 4 440 Go
Desktop has a 450 MHz Pentium 2, NVIDIA GeForce 2 GTS

2k x 2k mesh is a fractal synthesis
4k x 4k mesh is Puget Sound data set

61

*..

Index /- Via2dde

62

