
Fast View-Dependent Level-of-Detail
Rendering Using Cached Geometry

Josh Levenberg
UC Berkeley

http://www.technomagi.com/josh/vis2002/



Outline

• Problem statement

• Review of ROAM, an existing level-of-detail algorithm

• Binary Triangle Trees (BTTs), the mesh representation in
ROAM

• CABTT, my modification to ROAM for improved performance

– Continuity

– Error metric

– Amount of aggregation

• Conclusion

2



Goal

• Render a large height field at interactive rates on consumer
hardware

• For games, flight simulations

•Want to take advantage of modern and future consumer video
cards double in speed every 6 months

• Height fields are memory efficient, 32 million triangles in 32
MB

3



Algorithm Comparison

Brute force CABTT ROAM
6,200k tris 150k tris 60k tris

1-2 fps 120 fps 18 fps
geometry bound CPU bound

Speeds are for a 4k x 4k height field
Puget Sound data set from Lindstrom and Pascucci’s web site
32 million triangles before view culling
1.7 GHz Pentium 4m, NVIDIA GeForce 4 440 Go

4



ROAM (Review)

• ROAMing Terrain: Real-time Optimally Adapting Meshes by
Duchaineau et al. IEEE Vis 1997

• View-dependent level of detail

•Maintains a crack-free mesh using a Binary Triangle Tree
(BTT)

• Incrementally modifies mesh from frame-to-frame

• Uses prioritized work queues to control work per frame

5



ROAM

Advantages

• Few triangles to achieve error bound

• Fine control over error threshold, time spent per frame

Disadvantages

• Lots of per-triangle processing: CPU bound

• Can’t cache on video card

6



Binary Triangle Trees

• AKA: triangle bintrees, right triangular irregular networks,
newest-vertex-bisection meshes, BTTs

• Usually for Terrain, but works with base mesh + displacement
map

7



Don’t want T-Junctions

8



Example

5x5 height field

9



Diamond

base mesh = initial triangles

binary triangle

triangle base

10



Split of diamond

split

11



Split at edge

12



Another split

13



Another split

14



Force split

15



Force split

16



Force split

17



Force split

18



Force split

19



20



Merge

21



22



Another merge

23



24



ROAM render loop

• Split and merge to update BTT from last frame

• Render on-screen parts of BTT

25



New algorithm: CABTT

• Two improvements: aggregation and caching

•Mostly avoids per-triangle work

• Can trade between CPU work and more triangles for graphics
card

• Similar to RUSTiC except without having to precompute ge-
ometry

• Aggregates are large chunks of fixed geometry

• To change LOD, swap in more/fewer aggregates

• Aggregates may be cached

26



Example

27



Split

28



Split

29



Split

30



Merge

31



Aggregation Issues

• Continuity between adjacent aggregates

• Computing aggregate error

• Choosing amount of aggregation

32



Continuity

• Do not want T-junctions

• Adjacent aggregates are often at different levels of detail

•Mandate that aggregate boundaries are uniformly subdivided

• Costs ≤ 20%

33



Aggregate boundaries match up

34



Adaptive subdivision

• Previous picture showed uniformly subdivided aggregates

• Instead use a mini-BTT to create geometry tailored to height
field

• 2x improvement over uniform subdivision

– fewer triangles per aggregate

– lower approximation error

• “Tree of Trees”

35



Initial subdivision of aggregates

n=1, 2 segments per edge

36



Initial subdivision of aggregates

n=2, 4 segments per edge

37



Initial subdivision of aggregates

n=3, 8 segments per edge

38



Initial subdivision of aggregates

n=4, 16 segments per edge

39



Interior is adaptively subdivided

Split to minimize error in interior

40



CABTT render loop

• Split and merge to update BTT from last frame

– driven by a priority queue ordered by “camera movement until transitions
are possible”

• Render on-screen parts of BTT
If already cached:

– render cache

Else:

– construct aggregate/mini-BTT

– send geometry to video card

– discard mini-BTT

41



Aggregate error

42



Aggregate error

43



Aggregate error

44



Choosing aggregation level

• Profile a few levels at install time

•More aggregation:

– more triangles to render

– uses less main memory

– less CPU processing

– fewer splits and merges

– more work for every split and merge

• Rule of thumb: n=4

45



Aggregation level 4

No aggregation n = 4
180 triangles/aggregate

1 segment in boundary 16 segments in boundary
60,000 triangles 150,000 triangles
420,000 tree nodes 7,000 tree nodes
1.3 MB active data 0.3 MB active data
5500 split/merge tests per frame 90 split/merge tests per frame
300 splits per frame 4 splits per frame

46



Advantages of CABTT

•Greatly improved performance

– higher frame rates

– lower error tolerances

– more detail up close

– larger worlds or “to the horizon” rendering

• Adaptable to many hardware configurations

• Future proof

• Very efficient instancing (rendering many identical objects)

• Preserves most good features of ROAM

47



Performance
fr

am
es

 p
er

 se
co

nd

0

25

50

75
100

125
with cachingno caching

sub-triangles per aggregate
ROAM 4 15 53 17

9 57
9
1,9

04
6,6

59

ful
l m

esh

25
,29

9

48



Disadvantages of CABTT

• 2.5x triangles to achieve same error bound (but each renders
18x faster)

•More expensive to change error threshold

•Minimum detail level

– Could switch to a different LOD algorithm for far away objects

49



Future work

•Out-of-core rendering

•Other geometry

•Multiple instances

50



Questions?

Interactive Demonstration from 4–5pm today.

http://www.technomagi.com/josh/vis2002/

• Source code

• Demo

• These slides

51



Large data sets

• Large textures are memory intensive

– Texture LOD: Assign a static texture to each aggregate triangle

• Simple: use memory-mapped files

– Visualization of Large Terrains Made Easy, Lindstrom and Pascucci,
IEEE Vis 2001

• Harder: use non-blocking I/O

– Anticipate what data will be needed in the next several frames

– Prevent splits until data is loaded

– Keep aggregate error data in memory (1 float per 256 grid values)

52



Non-terrain models

Lots of research into base mesh + displacement:

• Normal meshes, Guskov et al., SIGGRAPH 2000

• Displaced subdivision surfaces, Lee et al., SIGGRAPH 2000

• Fitting smooth surfaces to dense polygon meshes, Krishna-
murthy and Levoy, SIGGRAPH 1996

• Remeshing: MAPS, Lee et al., SIGGRAPH 1998 and Kobbelt,
et al., Eurographics ‘99

53



Limitation: Static mesh

•Main reason: error metric

•Workaround: aggregate error could be updated in background
thread

• Alternative: use an error metric that is easier to update (mono-
tonic)

• Alternative: update error metric approximately

54



Past ROAM improvements

•Generally reduced CPU per triangle rendered

• Improving cache coherency (Lindstrom and Pascucci)

• Hierarchical work queue (Blow)

• Simplifying error metric (Blow)

• Storing only leaves of the tree (Blow)

• RUSTiC: a form of aggregation, but high memory and lots of
precomputation

All but the last of these stores every triangle in a BTT.

55



Multiple instances

• Idea is to share caches between models

• Keep a map from (base triangle, leaf number) in the model to
caches

•Maintain a count of how many instances are using each cache

• Still have an aggregated BTT for each model, plus a location
and orientation

56



Uniform boundary splitting

SplitEdge(BttNode, Side):
if BttNode is a leaf:

BttNode.Split()
if Side is not base:

BttNode.Child(Side).Split()
else if Side is base:

SplitEdge(BttNode.Child(left), right)
SplitEdge(BttNode.Child(right), left)

else:
SplitEdge(BttNode.Child(Side), base)

57



Computing aggregate error

• I use spherical error volumes

screen error≈ Cworld space error/distance to camera

• Triangle inequality:

view point to triangle ≤ view point to center
+center to triangle

• Aggregate error contains error volumes of all sub-triangles

Radius = max

{
center to triangle+

Cworld space error

screen error

}

58



Geometric complexity
th

ou
sa

nd
s o

f t
ria

ng
le

s
pe

r f
ra

m
e

0
100
200
300
400
500
600
700

ROAM 4 15 53 17
9 57

6
1,9

04
6,6

59

ful
l m

esh

sub-triangles per aggregate

6,208

25
,29

9

59



Rendering speed
m

ill
io

ns
 o

f t
ria

ng
le

s
pe

r s
ec

on
d

0
4
8

12
16
20

with cachingno caching

sub-triangles per aggregateROAM 4 15 53 17
9 57

9
19

04
6,6

59

ful
l m

esh

25
,29

9

60



Performance table

Laptop Desktop
2k x 2k 4k x 4k 2k x 2k 4k x 4k

CABTT 121 fps 120 fps 67 fps 39 fps
No caching 47 fps 46 fps 25 fps 17 fps
ROAM 19 fps 18 fps 9.7 fps 6.1 fps
Full mesh 4.5 fps 1.3 fps 2.3 fps 0.6 fps
Full mesh w/ caching 14 fps

Laptop has a 1.7 GHz Pentium 4m, NVIDIA GeForce 4 440 Go
Desktop has a 450 MHz Pentium 2, NVIDIA GeForce 2 GTS
2k x 2k mesh is a fractal synthesis

4k x 4k mesh is Puget Sound data set

61



Index

Don’t want T-Junctions Large data sets
BTT Example Non-terrain models
CABTT Example Limitation: Static mesh
Aggregate boundaries match up Past ROAM improvements
Initial subdivision of aggregates Multiple instances
Aggregate error Uniform boundary splitting
Aggregation level 4 Computing aggregate error
Performance (frames/second) Geometric complexity
Questions? Rendering speed

Performance table

62


