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tiones mathematicae, 1992.

Definition The rank of a free group is the number of generators in a basis for that free
group.

Conjecture (Hanna Neumann Conjecture (HNC)) Given subgroups H and K of a
free group F , where H has rank n + 1 and K has rank m + 1 (n, m ≥ 0), then the rank of
the intersection H ∩K has rank at most nm + 1.

Note that it is often convenient to talk about the reduced rank, r̃(G) = max (r(G)− 1, 0),
which is the rank minus one, except that the reduced rank of the trivial group is 0. The
Hanna Neumann Conjecture (now including the cases of H or K being trivial) then states
r̃(H ∩K) ≤ r̃(H) · r̃(K).

Conjecture (Strengthened Hanna Neumann Conjecture) Given subgroups H and K
of a free group F , ∑

x∈X

r̃
(
x−1Hx ∩K

)
≤ r̃(H) · r̃(K)

where X ⊂ F is a set of doublecoset representatives for the doublecosets HxK.

Theorem (Hanna Neumann inequality) Given subgroups H and K of a free group F ,

r̃ (H ∩K) ≤ 2r̃(H)r̃(K) .

Proof I gave a talk on this last semester. 2

Theorem (Tardos) The Strengthened Hanna Neumann Conjecture holds when one of the
groups has rank 2. I.e. if K has rank 2, then the rank of K ∩H is at most the rank of H.

Note: for all of the above, it is sufficient to show the case where F is the free group on
two generators a, b.
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Definition (Graphs) My graphs will be labeled and oriented (i.e.. every edge has a dis-
tinguished direction). So a graph Γ will consist of a vertex set V , an edge set E, a function
i : E → V describing the initial vertex of each edge, a function e 7→ ē : E → E taking each
edge to the same edge except with the opposite orientation (¯̄e = e), and a function l : E → X
taking edges to a label, which in our case will be one of {a, b, a−1, b−1} (l(ē) = l(e)−1). For
every finite rank subgroup G of F , the free group on a, b, we can construct a finite graph ΓG

where π1(ΓG) = G and there is an immersion of ΓG into the bouquet of two circles which
respects the labels of the graph.

Definition (The Pullback) We can construct the pullback of ΓH , ΓK (which I will write
ΓH×ΓK) as follows: let V = VH×VK , and let E = {(e1, e2) : e1 ∈ EH , e2 ∈ EK , l(e1) = l(e2)}.
Then, i(e1, e2) = (i(e1), i(e2)), (e1, e2) = (ē1, ē2), l(e1, e2) = l(e1) = l(e2). Note that there is
a natural immersion of ΓH×ΓK into ΓH or ΓK by projection. The graph of H∩K will be one
of the connected components of ΓH ×ΓK . The other components of the pullback correspond
to the distinct conjugates of H intersected with K (as described in the strengthened version
of the HNC).

Definition (Core) The core of a graph Γ is the maximal subgraph with no vertices of
valence 1. Since we only care about the rank of the graph, i.e., how many loops it contains,
we are only concerned about the cores of graphs. I will assume that all graphs are normal,
that is have only vertices with valence strictly bigger than 1. Note that in the pullback
construction above, we could first take core of ΓH and ΓK and that would not change the
core of the result.

Definition (Branch vertices) Since our graphs will all immerse in the bouquet of two
circles, the valences of vertices will be at most 4. Define Y (Γ) to be the set of vertices of
valence at least 3, and define X(Γ) to be the set of vertices of valence 4. Define the branching
number b(Γ) to be |Y (Γ)|+ |X(Γ)|. I.e. we count vertices of valence 3 plus twice vertices of
valence 4. Observe that r̃(G) = b(ΓG)/2 (assuming that we replace ΓG with its core).

Notation If v is a vertex of Γ (i.e. v ∈ V (Γ)) and x is a word in F , then we say vx ∈ Γ if
the path starting at v along edges given by the letters of x. If such a path exists vx will be
the vertex at the endpoint of the path. Note that if vx 6∈ Γ, we may extend Γ by adding at
most one branch point.

Lemma 1 Let Γ be a graph1, and x = yzy−1 (when written as a reduced word, with y, z 6= 1)
a conjugate element in F , then

|{v ∈ Y (Γ) : vx ∈ Γ}|+
∣∣∣{v ∈ Y (Γ) : vx−1 ∈ Γ}

∣∣∣ ≤ b(Γ)

1Tardos says “normal graph” here, but his proof doesn’t require the graph to be normal, and later he
uses this lemma with graphs that are not normal.
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Proof Subtract |Y (Γ)| from both sides. The left side becomes the difference between the
number of branch vertices v with both vx and vx−1 in Γ (call this G(Γ)), and the number of
branch vertices with neither defined (call this B(Γ)). The right side simply becomes |X(Γ)|.
We therefore want to show |G(Γ)| ≤ |B(Γ)|+ |X(Γ)|.

Assume without loss of generality that x, and therefore y, starts with a. Observe that z,
z−1, and y−1 all start with different first letters (say c, d, and e). This implies that for any
v ∈ G(Γ), vyz, vyz−1 ∈ Γ, so vy is also a branch point. If c, d, and e are all different than a,
then there is a 1-1 map from G(Γ) into the B(Γ) ∪X(Γ) given by v 7→ vy. The other cases
are handled with an induction on the length of x (the basis is included in the case above): if
a = e, i.e. y−1 starts with a, then y is a conjugate element with length less than x (can then
show |Y (Γ) \ B(Γ)| + |G(Γ)| ≤ |{v ∈ Y (Γ) : vy ∈ Γ}| + |{v ∈ Y (Γ) : vy−1 ∈ Γ}|). If a = d,
so z−1 starts with a, then yz is a conjugate element shorter than x (and then we modify the
graph). 2

Lemma 2 If Γ is a graph and x ∈ F is a conjugate element, then

|{v ∈ Y (Γ) : vx ∈ Γ or vx−1 ∈ Γ}|+ |{v ∈ V (Γ) : vx ∈ Γ and vx−1 ∈ Γ}| ≤ b(Γ)

Proof Note that this is the same as the previous lemma except the second set includes
points which are not branches. All we do is extend the graph so that any non-branch point
in the second set gets additional edges to bring the valence up to 3. Every time we do this,
we increase both the size of the first set and b(Γ) by 1. So if we apply the previous lemma
to the extended graph, we get the desired inequality plus a constant added to both sides. 2

This technique of adding new edges into the graph, applying the lemma and then ac-
counting for the differences introduced will be used repeatedly.

Lemma 3 If Γ is a graph and x ∈ F is a conjugate element, then

|{v ∈ Y (Γ) : ∃n 6= 0 s.t. vxn ∈ Γ}|+ |{v ∈ V (Γ) : ∃m < 0 < n s.t. vxm, vxn ∈ Γ}| ≤ b(Γ)

Proof Note that if x = yzy−1, then xn = yzny−1. So vxn ∈ Γ does not imply vx ∈ Γ. This
proof follows the same pattern as the previous lemma. This time we extend the graph so
that if vxn ∈ Γ, then also vx, vx2, . . . , vxn−1 ∈ Γ. 2

Main Idea We are going to show that if K has rank 2 then the rank of H ∩K is at most
the rank of H. Recall that the rank of a normal graph is directly proportional to its branch
number. Our strategy is to count the possible branch points in the pullback graph ΓH ×ΓK

and show that there are corresponding branch points in ΓH . Since we are dealing with the
whole graph ΓH ×ΓK instead of just the component H ∩K, we get the strengthened version
of HNC for this particular case.
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Figure 8 case Consider the case where ΓK consists of two loops which share a single vertex,
v. Since ΓK − {v} only has vertices of valence 2, all branch points in ΓH × ΓK are of the
form w′ = (w, v) for some branch point w ∈ ΓH . Further, the valence of w′ is at most the
valence of w. Therefore the branch number of the pullback is at most the branch number of
ΓH . (The only reason they are not equal is because the branch number of the pullback may
decrease when we drop to its core.)

Spectacles case Consider ΓK consisting of two loops connected by a path. Then ΓK has
two valence 3 vertices, s and t, a path y from s to t, a path z from t to itself, and a path from
s to itself. Let x = yzy−1. As before, any branch point in ΓH × ΓK must be the product of
a branch point in ΓH and a branch point in ΓK (either s or t). Claims: If v = (w, s) is a
branch point, then ∃n 6= 0 s.t. vxn ∈ ΓH ×ΓK . If (w, t) is a branch point, and v = (w, t)y−1,
then ∃m < 0 < n s.t. vxm, vxn ∈ ΓH ×ΓK . Then simply apply the last lemma above, to get
the result.

Theta case In this case ΓK has two branch points, s and t, and three paths y, z1, and z2

from s to t. This time our conjugate element x = yz−1
1 z2y

−1. Let Vs be the set of v ∈ Y (ΓH)
called s-vertices such that (s, v) ∈ ΓH × ΓK (and similarly Vt, t-vertices). Note that it is
possible for some s-vertices to also be t-vertices. Let Ys ⊂ Y (ΓH) consist of those s-vertices
v such that (v, s) is a branch point in ΓH × ΓK (similarly define Yt). Observe that since we
only are considering projections of the core of ΓH × ΓK , Vs \ Ys consists of vertices v where
two of vy, vz1, and vz2 are in ΓH . Note that Ys and Yt are not necessarily disjoint either,
but

b(ΓH × ΓK) = |Ys|+ |Yt| .
Now construct Γ′

H by building vy−1 from every t-vertex v in ΓH , and then from every
s-vertex u ∈ ΓH building both uz1y

−1 and uz2y
−1. All that remains is to justify the following

inequalities:

b(Γ′
H)− b(ΓH) ≤ |{u ∈ V ′ \ V : ux ∈ Γ′

H and ux−1 ∈ Γ′
H}|+ |{u ∈ Vs \ Ys : uy ∈ Vt}|

(where V ′ is the set of vertices of Γ′
H)

|Yt| ≤ |{u ∈ V : ux ∈ Γ′
H and ux−1 ∈ Γ′

H}|

|{u ∈ Vs \ Ys : uy ∈ Vt}|+ |Ys| ≤ |{u ∈ Y (Γ′
H) : ux ∈ Γ′

H or ux−1 ∈ Γ′
H}|

Applying the second lemma to Γ′
H , gives:

|{u ∈ Y (Γ′
H) : ux ∈ Γ′

H or ux−1 ∈ Γ′
H}|+ |{u ∈ V ′ : ux ∈ Γ′

H and ux−1 ∈ Γ′
H}| ≤ b(Γ′

H)

Adding up all the inequalities along with b(ΓH×ΓK) = |Ys|+|Yt| gives the result b(ΓH×ΓK) ≤
b(ΓH) as desired.

Other Result Warren Dicks showed the Hanna Neumann Conjecture is equivalent to the
Amalgamated Graph Conjecture, and used this to reprove the above result and another past
result (Inv. math., 1994).
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Other Result Then Dicks in 1996 proved the inequality when both subgroups have rank
3 (Inv. math, 1996).

Other Result Finally, in a preprint, Dicks along with E. Formanek showed r̃(H ∩ K) ≤
r̃(H)r̃(K) + r−3(H)r−3(K) where r−3(H) = max(r(H)− 3, 0). This proves that HNC holds
when one subgroup has rank 3. See

http://manwe.mat.uab.es/dicks/Rankthree.html

(to appear). I believe this is the best known general bound.

Other Result The Hanna Neumann conjecture holds if H or K has a positive generating
set (Bilal Khan, 2000).
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